

Efficient oxygen reduction reaction electrocatalysts for Zn-Air battery

Jang-Soo Lee, Taemin Lee, Hyun-Kon Song, Byeong-Su Kim, Jaephil Cho*

Interdisciplinary School of Green Energy and Converging Research Center for Innovative Battery Technologies UNIST, Korea

25th KECS Autumn Meeting (2011)

This presentation does not contain any proprietary or confidential information

Our studies in Zinc-air battery

1. Jang-Soo Lee, Sun Tai Kim, Ruiguo Cao, Nam-Soon Choi, Meilin Liu, Kyu Tae Lee*, Jaephil Cho*, "Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air", 1, 1, 34-50, 2011, *Adv. Energy Mater.*

2. Min-Kyu Song, Soojin Park, Faisal M. Alamgir, Jaephil Cho*, Meilin Liu* "Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives", 2011, *Mater. Sci. Eng. R* (doi:10.1016/j.mser.2011.06.001)

Our studies in Zinc-air battery

3. Jang-Soo Lee, Taemin Lee, Hyun-Kon Song, Jaephil Cho* and Byeong-Su Kim* "Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries", 4, 4148-4154, 2011, *Energy Environ. Sci.*

4. Jang-Soo Lee, Gi Su Park, Sun Tai Kim, Ruiguo Cao, Meilin Liu*, and Jaephil Cho* "Ketjenblack carbon supported amorphous manganese oxides nanowires as high efficient electrocatalyst for oxygen reduction reaction", 11, 5362-5366, 2011, *Nano Lett.*

Contents

01 Lighter energy storage devices

- 1. Metal-air battery (Zn-air battery)
- 2. Oxygen reduction reaction (ORR)
- 3. ORR catalysts approach

02 Efficient ORR catalysts in alkaline solution

1. rGO-IL/Mn $_3O_4$ composite

2. Amorphous MnOx Nanowires on Ketjenblack composite

03 Conclusions

1. Lighter energy storage devices^{1,2}

New Energy and Industrial Technology Development Organization

In Japan, **the final target** of the New Energy and Industrial Technology Development Organization (NEDO) project for batteries in **next-generation EV**

The theoretical specific energy density of **Zn-air batteries**: 1084 Wh/kg (?)

1. Lighter energy storage devices^{1,2}

- 1. Promise and Challenges: Li-Air Batteries, IBM Almaden Research Center, May 6, 2010
- 2. Lee et al, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air, Adv. Energy Mater., 1, 34-50, 2011

6

1. 1 Metal-air battery (Zinc-air battery)

$$E^{\circ} = +0.4$$

$$C_{2}(g) + 2H_{2}O + 4e^{-} \leftrightarrow 4OH^{-}(aq) \quad (ORR)$$

$$E^{\circ} = -0.9$$

$$Fe \text{ (metal)} \Rightarrow Fe/Air$$

$$Zn-air \text{ battery}$$

$$Zn-air \text{ battery}$$

$$E^{\circ} = -1.25$$

$$Zn(OH)_{4}^{2-} + 2e^{-} \leftrightarrow Zn + 4OH^{-}(aq)$$

$$Air \text{ (oxygen)}$$

$$E^{\circ} = -2.3$$

$$AI \text{ (metal)} \Rightarrow AI/air$$

$$E^{\circ} = -3$$

$$Hi \text{ (metal)} \Rightarrow Mg/air$$

$$Hi \text{ (metal)} \Rightarrow Li/air$$

1. 2 Oxygen reduction reaction (ORR)

- 1. Lee et al, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air, Adv. Energy Mater., 1, 34-50, 2011
- 2. Anastasijevic et al, Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ringdisk electrode: Part I. Theory, J. Electroanal. Chem., 229, 305-316, 1987

8

3. B. Viswanathan et al, **On the search for non-noble metal based electrodes for oxygen reduction reaction**, *Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel*, 43-101, 2006

1. 3 ORR catalysts approach

2. Efficient ORR catalysts in alkaline solution

2. 1 Approach 1: rGO-IL/Mn₃O₄ composite

Lee et al, Ionic Liquid Modified Graphene Nanosheet Anchoring Manganese Oxide Nanoparticles as Efficient Electrocatalysts for Zn-Air Battery, 4, 4148-4154, *Energy Environ. Sci.* 2011 (DOI: 10.1039/c1ee01942b)

Physical characterization for rGO-IL/Mn₃O₄

Physical characterization for rGO-IL/Mn₃O₄

XRD data (Mn Oxide phase)

- 1. Lanqun Mao et al, Electrochemical Characterization of Catalytic Activities of Manganese Oxides to Oxygen Reduction in Alkaline aqueous Solution, Journal of The Electrochemical Society, 149 (4) A504-A507, 2002
- 2. Y.L. Cao et al, **The mechanism of oxygen reduction on MnO₂-catalyzed air cathode in alkaline solution**, Journal of Electroanalytical Chemistry 557, 127-134, 2003

Physical characterization for rGO-IL/Mn₃O₄

SEM and TEM images of rGO-IL/Mn₃O₄

• Non-uniform coating of Mn_3O_4 nanoparticles (*avg. d*= ca 10nm), but the graphene-nanoparticle Interaction allows good dispersion \rightarrow Avoid potential aggregation of nanoparticles • SAED \rightarrow crystalline nature of the Mn_3O_4 nanoparticles

• In the elemental mapping \rightarrow C, O and N (from rGO-IL) Mn and O (from Mn₃O₄)

rGO-IL/Mn₃O₄ catalysts: Evolution of ORR Activity

<Surface resistance of air electrode> rGO-IL/Mn₃O₄ (2:1): 61.1 ohm/sq (52.5% Mn contents by TGA) rGO-IL/Mn₃O₄ (10:1): 120.3 ohm/sq (19.2% Mn contents by TGA)

Both **electrical conductivity** and **catalytic activity** should be considered in designing proper ORR catalysts. ionic liquid also affects ORR activity.^{1,2}

- 1. Snyder et al, Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts, Nature Materials , 9, 904– 907, 2010 15
- 2. James F. Wishart, Energy applications of ionic liquids, Energy Environ. Sci., 2, 956-961, 2009

ORR pathway in our system

· Electrical conductivity could affect ORR pathway

· Reaction mechanism is tunable simply with the relative

amount of nanoparticles supported onto the graphene sheets

Practical application on Zn-air battery

 \cdot Maximum peak power density of 120 mW/cm² can be obtained.

· This hybrid catalyst could be used as a potential candidate in low-cost electrocatalysts.

2. 2 Approach 2: Amorphous MnOx Nanowires on Ketjenblack

Lee et al, Ketjenblack carbon supported amorphous manganese oxides nanowires as high efficient electrocatalyst for oxygen reduction reaction, 11, 5362-5366, 2011, *Nano Lett.*

Physical characterization for catalysts

XRD data (Mn Oxide phase) and TEM image of catalysts

 Mn Oxide structure is amorphous (in XRD)
 Amorphous Nanowire structure (in TEM)
 → Large and rough surface area of amorphous MnOx NWs
 → High concentration in lattice defects¹

1. Yang, J.; Xu, J. J., **Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions**, Electrochemistry Communications, 5 (4), 306-311, 2003

Physical characterization for catalysts

Amorphous MnOx NWs (line mapping: Mn, O in TEM)

Catalysts: Evolution of ORR Activity

Rotating Disk Electrode (RDE) Data

Ketjenblack carbon (large surface area and good electrical conductivity)
 + amorphous MnOx (large surface area and high concentration in defect sites)
 Enhanced ORR activity

Catalysts: Evolution of ORR Activity

Geometrical effect on enhenced ORR activity

 Amorphous MnOx NWs structure has less selectivity to certain one model unlike other crystalline MnOx

- 1. J. S. Griffith, On the Magnetic Properties of Some Haemoglobin Complexes. Proc. R. Sot. London Ser. 23, A 235, 1956
- 2. L. Pauling, Nature of the Iron-Oxygen Bond in Oxyhaemoglobin, Nature 203, 182, 1964
- 3. E. Yeager, Recent Advances in the Science of Electrocatalysis, J. Electrochem. Soc. 128, 160C, 1981

Practical application on Zn-air battery

 Maximum peak power density of ca. 190 mW/cm² can be obtained. (similar to 20% Pt@Vulcan carbon catalyst)
 This hybrid catalyst could be used as a potential candidate in low-cost electrocatalysts.

3. Conclusions Approach 1: rGO-IL/Mn₃O₄ composite

Electrical conductivity, ionic liquid moiety affect ORR catalytic activity and pathway.
Reaction mechanism is tunable simply with the relative amount of nanoparticles supported onto the graphene sheets

3. Conclusions

Approach 2: Amorphous MnOx Nanowires on Ketjenblack

Improved ORR activity

